Chapter 1 Chemistry and Measurement (Essential Ideas in OpenStax)

Matter

- Matter is anything that has substance and occupies space. Matter also has mass and volume.
- A material is any particular type of matter.
- An atom is the smallest base unit of matter which has a chemical identity.

It exists as a very tiny particle.
The basic theory of atoms was developed by John Dalton in early $19^{\text {th }}$ century (chapter 2).

- A molecule is a set of atoms that are bonded together in a particular arrangement to form a more complex material.
- A substance is a material with a single chemical identity, and a pure substance is composed entirely of one particular atom, molecule, or chemical formula.

Scientific Method

- An experiment is an observation of phenomena that is controlled so that rational conclusions can be obtained from results.
- A law is a fundamental relationship or regularity of nature.

It is stated concisely, such as with an equation.

- A hypothesis is a tentative explanation of natural regularity.

It can be tested with further experimentation.

- A theory is an explanation for which extensive testing has proven its validity.

It cannot be proven absolutely, but a well-developed theory would explain everything observed, and would not be contradicted by any observations.

- Theories can have limitations, and can be improved upon or replaced.

This process requires more experiments and more explanations.

Conservation of Mass

- Mass is a definite quantity of matter.
- The Law of Conservation of Matter is that total mass remains constant during a chemical rxn.
- Matter cannot be created or destroyed except by nuclear reaction, where $\mathrm{E}=\mathrm{mc}^{2}$.

This law was first demonstrated by Antoine Lavoisier in late $18^{\text {th }}$ century.

- Weight (w) is not the same as mass (m). Weight is the force of gravity acting upon a mass. The general equation for force is $\mathrm{F}=\mathrm{ma}$, where a is acceleration in $\mathrm{m} / \mathrm{s}^{2}$.
For weight, the equation is $w=m g$, where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (acceleration due to gravity).

Ex 1.01 Matter (or Mass) is Conserved in a Chemical Reaction

- aluminum + oxygen \rightarrow aluminum oxide (a white odorless crystalline powder)
- Mass before reaction (of aluminum and oxygen) = Mass after reaction (of aluminum oxide)
- $\quad(5.40 \mathrm{~g}$ aluminum $)+($ mass oxygen $)=10.20 \mathrm{~g}$
- mass oxygen $=10.20 \mathrm{~g}-5.40 \mathrm{~g}=4.80 \mathrm{~g}$

Phases

- Solid is matter that is rigid, has a fixed volume and a fixed shape (not a fluid).
- Liquid has a relatively fixed volume, but no fixed shape (fluid).
- Gas also has no fixed shape, but is easily compressible.

Its volume is a function of pressure and temperature.

- Gases and liquids are fluids. That is, they have no fixed shape.

Physical and Chemical Changes

- A physical change is when matter changes its form, but not its identity,
- Physical changes include vaporization, distillation (separation into components by vaporizing with heat), and dissolving a molecular substance.
- A physical property is a characteristic that is observed without a change to chemical identity.
- A chemical change is when matter changes identity, and it involves a chemical reaction.

A chemical change occurs when molecules form or decompose.

- Chemical changes include dissolving an ionic substance, which separates the substance into its component ions.
- A chemical property describes a change to chemical identity.
- A substance cannot be converted into components or into another substance by a purely physical change.
- An element is the most basic type of substance.

It cannot decompose into a simpler substance.
All of the atoms in an element have the same chemical identity.

- A compound is a substance composed of two or more elements.

Law of Definite Proportions

- A pure compound has constant integer proportions of its elements. This law was developed by Joseph Louis Proust (early $19^{\text {th }}$ century).
- For example, ammonia always contains 3 moles of H for every 1 mole of N .

Each molecule contains three H atoms and one N atom.
So, its formula is a constant, and is written as NH_{3}.

Mixtures

- A mixture can generally be separated into two or more substances by a pure physical process.
- A homogeneous mixture is completely uniform down to the atomic or molecular level. This is called a solution, and all of the molecules are dissolved together completely.
- A heterogeneous mixture contains two or more physically distinct parts. If the mixture contains particles of one material dispersed within another continuous material, it is called a colloid or a dispersion. Examples of colloids include foams, gels, and aerosols.
- A phase is a single homogeneous material (a solid, liquid, or gas). It can be either a pure substance or a homogeneous mixture.

Physical Measurements

- Measurements determine physical quantities and are always expressed with fixed standard units of measurement.
- Precision is the closeness of a set of values to each other for identical measurements (repeatability).
- Accuracy is the closeness of the measurements to the actual value (limits of error).

What Significant Figures Are

- Significant figures report known digits only and tell us how well a particular value is known.
- They include all certain digits plus a final digit which has some uncertainty.

Which Zeros Are Significant

1. 0 's at the very beginning of the value (left side) are place holders only and are not significant.
2. Terminal 0 's to right of the decimal point are significant. Report these if and only if certain: 0.5 has only one significant digit, however 0.500 has three and the terminal zeros are known.
3. Terminal 0 's to left of the decimal point may not be significant: 53000 is ambiguous. Use scientific notation to remove the ambiguity:

$$
5.30 \times 10^{4} \text { has three digits. }
$$

How To Multiply and Divide with Significant Figures

- Use as many significant digits in the final result as in the measurement which has the least number of significant digits. For instance, $0.3 \underline{1} \times 18.02=5 . \underline{6}$ with two digits.

How To Add and Subtract with Significant Figures

- Use as many decimal places in the final result as in the measurement which has the least number of decimal places. For instance, $16.0 \underline{0}+2.016=18.0 \underline{2}$ with two decimal places.

How To Treat Exact Numbers

- Exact numbers have no uncertainty. They include integers and some conversion factors.
- They do not decrease the number of significant digits or decimal points in a calculation at all.
- Treat them as if they have an infinite number of significant 0 's following the value.

How To Round

- Drop the non-significant digits. Then, adjust the last significant digit accordingly.
- If first non-significant digit is < 5, round DOWN by retaining the last significant digit.
- If first non-significant digit is >5, round UP by adding 1 to the last significant digit.
- If first non-significant digit is $=5$, round UP unless there are no digits at all past the 5 . If the non-significant 5 is the very last digit, then round to an EVEN digit.

How To Apply Significant Digits In Your Calculations

- Keep the non-significant digits during the intermediate calculation steps.
- Drop the non-significant digits and round last digit to submit the final reported result.
- Report ALL of the significant digits and ONLY the significant digits in the final answer!

Example 1.02 Perform Calculations with Significant Figures
a) For $4.578 \times 6 . \underline{8} / 5.8257$, the result has two digits.

This is because the measurement with the least number of digits (two) is 6.8 .
b) For $7.4 \underline{4}-0.299$, the result (7.14) has two decimal places, as does $7.4 \underline{4}$.
c) For $9.2 \underline{8}-8.3 \underline{1}$, the result ($0.9 \underline{7}$) has two decimal places, as do both measurements.
d) $86.51 \times(9.2 \underline{8}-8.3 \underline{1})=86.51 \times 0.9 \underline{1}=8 \underline{4}$

The result (8ㄹ.9147) has two significant digits, which leaves zero decimal places.
e) $72.88-(8 \underline{3} .9147)$ has zero decimal places $(-1 \underline{1})$.

International System of Units (SI) - the metric system

- Base units are m, kg, s, Kelvins (K), mole, ampere (A), and candela (cd).
- Prefixes are used to denote exponents of 10.
milli $(\mathrm{m})=1 / 1000 \quad$ centi $(\mathrm{c})=1 / 100 \quad$ deci $(\mathrm{d})=1 / 10 \quad$ kilo $(\mathrm{k})=1000$
$1 \mathrm{~mm}=1 / 1000 \mathrm{~m}=0.001 \mathrm{~m}$ and $1000 \mathrm{~mm}=1 \mathrm{~m}$
$1 \mathrm{~km}=1000 \mathrm{~m}$ and $1 \mathrm{~m}=1 / 1000 \mathrm{~km}=0.001 \mathrm{~km}$
- Angstrom $(\AA): 1 \AA=10^{-10} \mathrm{~m}=10^{-8} \mathrm{~cm}=100 \mathrm{pm} \quad\left(1 \mathrm{pm}=10^{-12} \mathrm{~m}\right)$

Temperature Conversions

- Scientific temperature measurements are in units of Kelvins, which equal ${ }^{\circ} \mathrm{C}+273.15$. $25.00{ }^{\circ} \mathrm{C}=298.15 \mathrm{~K}$ and $0.00 \mathrm{~K}=-273.15{ }^{\circ} \mathrm{C}$
- Conversions between Celsius and Fahrenheit are based on $0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}$ (freezing pt of water) and a temperature change of $5{ }^{\circ} \mathrm{C}$ equals a change of $9^{\circ} \mathrm{F}$. All of those values are exact.
- This gives us two equations: ${ }^{\circ} \mathrm{C}=\left(\frac{5}{9}\right) \times\left({ }^{\circ} \mathrm{F}-32\right)$ and ${ }^{\circ} \mathrm{F}=(1.8) \times\left({ }^{\circ} \mathrm{C}\right)+32$

For example: $(1.8)\left(25^{\circ} \mathrm{C}\right)+32=45+32=77^{\circ} \mathrm{F}$
Ex 1.03 Convert $83 . \underline{0}^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$ and K
$-\quad{ }^{\circ} \mathrm{C}=(5 / 9) \times(83 . \underline{0}-32.0)=(5 / 9) \times(51 . \underline{0})=28.3333^{\circ} \mathrm{C}=28 . \underline{3}^{\circ} \mathrm{C}$

- $\quad \mathrm{K}=28 . \underline{3} 333+273.15=301.4833 \mathrm{~K}=301 . \underline{5} \mathrm{~K}$

Derived Units

- Derived units are obtained by multiplying and dividing base units together.

See the list of derived units in Table 2.

- length ${ }^{2}$ = area, so the derived unit for area is m^{2}
- length ${ }^{3}=$ volume, so the derived unit for volume is m^{3}
- density = mass divided by volume, so the derived units for density are $\mathrm{kg} / \mathrm{m}^{3}$ and $\mathrm{g} / \mathrm{cm}^{3}$.

Dimensional Analysis: Using Conversion Factors

- $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$ is a unit equation, which gives two conversion factors:

$$
\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~cm}^{3}}\right) \text { and }\left(\frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{~L}}\right)
$$

- Since the two values are always equivalent, a conversion factor is always equal to 1 .
- The volume in cm^{3} for 2 L of water $=(2 \mathrm{~L})\left(\frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{~L}}\right)=2000 \mathrm{~cm}^{3}$
- Exponents can be used in the values and the units as well.
$10^{2} \mathrm{~cm}=1 \mathrm{~m}$ can be cubed for volume, and $\left(10^{2} \mathrm{~cm}\right)^{3}=(1 \mathrm{~m})^{3}$ simplifies to $10^{6} \mathrm{~cm}^{3}=1 \mathrm{~m}^{3}$

Conversions with Derived Units

- $1 \mathrm{~L}=1 \mathrm{dm}^{3}=\left(1 \mathrm{dm}^{3}\right)\left(\frac{10^{-1} \mathrm{~m}}{1 \mathrm{dm}}\right)^{3}=\left(1 \mathrm{dm}^{3}\right)\left(\frac{10^{-3} \mathrm{~m}^{3}}{1 \mathrm{dm}^{3}}\right)=10^{-3} \mathrm{~m}^{3}$
- $1 \mathrm{~L}=1 \mathrm{dm}^{3}=\left(1 \mathrm{dm}^{3}\right)\left(\frac{10 \mathrm{~cm}}{1 \mathrm{dm}}\right)^{3}=\left(1 \mathrm{dm}^{3}\right)\left(\frac{10^{3} \mathrm{~cm}^{3}}{1 \mathrm{dm}^{3}}\right)=10^{3} \mathrm{~cm}^{3}$
- $1 \mathrm{~L}=1000 \mathrm{ml}$ and $1 \mathrm{ml}=\frac{1}{1000} \mathrm{~L}$
$-1 \mathrm{ml}=\left(\frac{1}{1000} \mathrm{~L}\right)\left(\frac{10^{-3} \mathrm{~m}^{3}}{1 \mathrm{~L}}\right)=\left(10^{-3} \mathrm{~L}\right)\left(\frac{10^{-3} \mathrm{~m}^{3}}{1 \mathrm{~L}}\right)=10^{(-3)+(-3)} \mathrm{m}^{3}=10^{-6} \mathrm{~m}^{3}$
- $1 \mathrm{ml}=\left(\frac{1}{1000} \mathrm{~L}\right)\left(\frac{10^{+3} \mathrm{~cm}^{3}}{1 \mathrm{~L}}\right)=\left(10^{-3} \mathrm{~L}\right)\left(\frac{10^{+3} \mathrm{~cm}^{3}}{1 \mathrm{~L}}\right)=10^{(-3)+(+3)} \mathrm{cm}^{3}=10^{0} \mathrm{~cm}^{3}=1 \mathrm{~cm}^{3}$

Density

- Density is mass per unit volume, and the equation is $\mathrm{d}=\mathrm{m} / \mathrm{V}$.

The units are g / ml for liquids, which are equivalent to $\mathrm{g} / \mathrm{cm}^{3}$ for solids.

- The equation can be rearranged to $\mathrm{V}=\mathrm{m} / \mathrm{d}$ and $\mathrm{m}=\mathrm{d} \times \mathrm{V}$.
- The maximum density of water is $0.99997 \mathrm{~g} / \mathrm{ml}$ at $4^{\circ} \mathrm{C}$, just slightly less than exactly $1 \mathrm{~g} / \mathrm{ml}$.

Ex 1.04 Determine Density from Volume and Mass

- 8.10 ml of a clear liquid sample has a mass of 6.367 g .
- $\mathrm{d}=\mathrm{m} / \mathrm{V}=\frac{(6.367 \mathrm{~g})}{(8.10 \mathrm{ml})}=0.786 \mathrm{~g} / \mathrm{ml}$
- The result does not match the density of water.

But, it does match the density of isopropyl alcohol.

Ex 1.05 Use Density to Determine Volume from Mass

- An isopropyl alcohol sample has a mass of 37.4 g .
- $\mathrm{V}=\mathrm{m} / \mathrm{d}=\frac{(37.4 \mathrm{~g})}{\left(0.786 \frac{\mathrm{~g}}{\mathrm{ml}}\right)}=47.6 \mathrm{ml}$
- Density is being used here as a conversion factor.

Ex 1.06 Metric Conversion Factors

- Convert 25.4 g to mg and kg in scientific notation.
$-\quad(25.4 \mathrm{~g})\left(\frac{10^{3} \mathrm{mg}}{1 \mathrm{~g}}\right)=\left(2.5 \underline{4} \times 10^{1} \mathrm{~g}\right)\left(\frac{10^{3} \mathrm{mg}}{1 \mathrm{~g}}\right)=2.5 \underline{4} \times 10^{4} \mathrm{mg}$
$-\quad(25.4 \mathrm{~g})\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)=\left(2.5 \underline{4} \times 10^{1} \mathrm{~g}\right)\left(\frac{10^{-3} \mathrm{~kg}}{1 \mathrm{~g}}\right)=2.5 \underline{4} \times 10^{-2} \mathrm{~kg}$

Ex 1.07 Conversion Factors derived by using Exponents

- The Earth possesses a total of $1.386 \times 10^{9} \mathrm{~km}^{3}$ of water.

Convert that value to L and kg using the density of water as $1.000 \mathrm{~g} / \mathrm{mL}$.
$-\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)^{3}=\frac{10^{3 \times 3} \mathrm{~m}^{3}}{1^{3} \mathrm{~km}^{3}}=\frac{10^{9} \mathrm{~m}^{3}}{1 \mathrm{~km}^{3}} \quad\left(\frac{10 \mathrm{dm}}{1 \mathrm{~m}}\right)^{3}=\frac{10^{3} \mathrm{dm}^{3}}{1 \mathrm{~m}^{3}}$
$-\left(1.38 \underline{6} \times 10^{9} \mathrm{~km}^{3}\right)\left(\frac{10^{9} \mathrm{~m}^{3}}{1 \mathrm{~km}^{3}}\right)=1.38 \underline{6} \times 10^{18} \mathrm{~m}^{3}$
$-\left(1.38 \underline{6} \times 10^{18} \mathrm{~m}^{3}\right)\left(\frac{10^{3} \mathrm{dm}^{3}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~L}}{1 \mathrm{dm}^{3}}\right)=1.38 \underline{6} \times 10^{21} \mathrm{~L}$
$-\left(1.38 \underline{6} \times 10^{21} \mathrm{~L}\right)\left(\frac{10^{3} \mathrm{ml}}{1 \mathrm{~L}}\right)\left(\frac{1.000 \mathrm{~g}}{1 \mathrm{~mL}}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)=1.38 \underline{6} \times 10^{21} \mathrm{~kg}$

Ex 1.08 Conversions between English (lbs and oz) and Metric (g)

- The first conversion factor is an exact number within the English system.

So there is no change to number of significant digits.

- $\quad(5.127 \underline{5} \mathrm{lb})\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)=82.04 \underline{0} \mathrm{oz}$
- The second conversion factor converts between systems and is not an exact number.

So it can and does reduce the number of significant digits.
$-\quad(82.04 \underline{0} \mathrm{oz})\left(\frac{28.35 \mathrm{~g}}{1 \mathrm{oz}}\right)=2.32 \underline{6} \times 10^{3} \mathrm{~g}$

